
Two-Wheeled Self-Balancing Mobile Robot

Harris Ramos Baroni, Hassan Shahzad, Daniel Helmia

aDepartment of Computer Science, University College London,

1. Introduction

In this project, we focus on the design and implementation of a two-
wheeled self-balancing robot, leveraging the principles of PID control. The
objective is to create a platform that demonstrates fundamental concepts of
control theory while emphasising practical electronics design and implemen-
tation.

Typically modelled as inverted pendulum on a cart [5], a self-balancing
robot represents an intriguing challenge due to the inherent instability of
its design [4]. On the surface, such a robot has a limited appeal outside of
academics. However, we have seen its real applications such as in the Segway,
a two-wheeled, self-balancing electric vehicle [1]. Our project seeks to explore
this dynamic equilibrium phenomenon through the lens of electronics and
control systems.

We will implement two different modes of operation. One is the teleoper-
ation mode in which the robot can be remotely steered through the use of a
gamepad. As with [6], the remote steering is differential driven. The second
is the object tracking mode in which the robot uses camera vision to find a
marker and maintain a desired pose relative to it.

An important aspect of this project is the implementation of a PID con-
troller to maintain balance of the robot. Originally, the idea was to implement
a hybrid analogue-digital PID controller. Kuphaldt discusses fully analogue
PID controllers in his textbook [2] which can provide real-time stabilisation.
He argues that its faster response speed may be beneficial in applications of
motion control. However, we also consider the potential difficulty in mainte-
nance since troubleshooting and debugging a complex analogue circuits can
be challenging. Our particular implementation of a PID controller allows
us to ease the tuning process through live tuning. The using a fully digital
controller also allows us to experiment with more complex control strategies.

Preprint submitted to Elsevier April 5, 2024



We will address various aspects of the design process, including system
modeling, theory, electronic design, and testing. By the conclusion of this
project, we anticipate achieving a functional two-wheeled self-balancing robot
capable of maintaining its upright position in both teleoperation and tracking
modes.

2. Theoretical background

2.1. Overall system

The ESP32 is the microcontroller responsible for stabilising the robot
through a PID loop and telling the stepper motors what velocity they should
be spinning at to stabilise. This is done by utilising an IMU to find how far
the robot is from its desired stable position and a Raspberry Pi which feeds
the ESP32 which a constant stream of target linear and angular velocity in
the form of a twist message.

The Raspberry Pi runs ROS2 nodes to handle communication between
the microcontroller, the gamepad and the camera. Ultimately, the nodes are
responsible for obtaining inputs from the gamepad and camera and then send-
ing inclination and steering commands to the microcontroller. The gamepad
is also used to alter the Kp, Ki and Kd gains for the PID loop used to bal-
ance the robot and another value which will be discussed later. We have an
OLED display which updates the user of theses values as well as the IMU
inclination measurement in real time.

As the stepper motors are driven using 12V, we employ a 3S LiPO battery
which directly powers the stepper drivers. This is then connected in parallel
to a step down converter capable of outputting 5A max at 5V. This 5V then
powers the Raspberry Pi which turns on the ESP32 since both are connected
over USB. The OLED display and IMU is then powered by the ESP32.

2.2. Driving the robot

Observe fig. 1, which shows a simplified side profile of the robot. The
IMU is calibrated when the robot is fully upright to measure deviations from
the upwards vertical. It is unlikely that the centre of mass of the robot lies
exactly on the vertical when it is fully upright. Instead, the centre of mass
lies at an angle θ0 from the vertical.

A PID controller is employed to keep the robot balanced as well as drive
it forward and backward. In order to drive the forward, we set a target
inclination θdrive of the robot from vertical. We seek a suitable error measure

2



Figure 1: Driving through inclination

ϵ for a PID controller to keep the robot at a desired inclination by outputting
command velocities to the wheels. The condition is that the robot be still
when we desire the centre of mass of the robot to be upright. Let θrobot be
the actual inclination (pitch) that the IMU measures. We can express our
condition as follows:

v(ϵ) = Kpϵ+Ki

∫
ϵdt+Kd

dϵ

dt

ϵ = v(ϵ) = 0, if θrobot = −θ0 and θdrive = 0

Then ϵ = θdrive − θ0 − θrobot satisfies this condition. When θdrive = 0 and
θrobot = −θ0 , the error goes to zero and thus the output velocity v of the
PID is also zero, as we wished.

It is important to accurately determine θ0 so that the our driving and
steering commands are realised as we wish. For this reason, we also allow
for live editing θ0 in the EEPROM. This comes with the added benefit of
enabling manual compensation for drift in the IMU measurements in real
time: simply change θ0 by the amount of drift.

Our balancing PID controller is the most crucial: the robot will not
function at all if it is not upright. So excellent tuning will be crucial. For
this reason we will enable live tuning of the PID controller. Gamepad inputs
are mapped to the desired changes to proportional, derivative and integral
gain values and stored in EEPROM external memory so that they can be
accessed in later sessions after powering the robot off and on again. We also
make the wheels stop altogether once the IMU senses that the robot is past a
critical inclination value. This would prevents the wheels from unnecessarily

3



when the robot is in a state where it will inevitably topple, or perhaps, when
the robot is in a toppled state.

2.3. Steering the robot

(a) Turn = Drive + Spin
(b) Successful balancing, driving and
steering in PyBullet simulation

Figure 2: Steering the robot

To make the robot turn on the spot, the left and right wheels must go
in opposite directions while also respecting the commands to keep the robot
upright. In order to turn, the wheels must have a velocity difference which
respects the commands to keep the robot at some driving inclination. Fig-
ure 2a depicts the way the robot can make turns, that is, driving forward
while simultaneously changing the driving direction. To achieve this, it is
appropriate to combine the velocity commands for driving and steering with
a simple vector sum.

We can verify that this way of combining command velocities is appro-
priate through simulation. We first constructed a simple URDF model of the
robot which also modelled a nonzero θ0. Using the python physics simulation
module called PyBullet, we implemented the aforementioned PID controller
which manages the error ϵ by outputting command velocities to drive both
wheels forward or backward. Steering and inclination commands were sup-
plied by a Bluetooth gamepad and the robot successfully balanced upright
and made turns as desired.

2.4. Filtering IMU data
The stability and robustness of the robot depends on providing accurate

data, but IMU sensors are prone to noise and disturbances, which can intro-
duce errors in the measurements. Furthermore, the IMU measures angular

4



velocity and this data needs to be integrated over time to obtain orientation
information. The integration is sensitive to noise and bias errors, which can
accumulate over time and lead to drift in the estimation. We filtered the
IMU data to reduce noise to provide a smoother and more accurate estimate
of the robot’s orientation, as well as mitigating integration errors to improve
the long-term stability of the estimation.

The dynamics of our robot are more complex than those of a simple pen-
dulum on a cart due to the additional motion of the ”cart”. This is because
the motion is caused by command velocities in the wheels as opposed to
command torques. While there already equations of motion that describe
the system’s behavior when external forces and torques are applied, incorpo-
rating velocity commands to the motors adds another layer of complexity.

Kalman filters can provide high estimation accuracy by explicitly model-
ing system dynamics and sensor noise [3]. As discussed, obtaining an analyt-
ical solution for the robots equations of motion can be challenging. For this
reason, we used a complementary filter instead as it was simpler to implement
provided satisfactory results. See the appendix for the algorithm.

Line 11 is given with respect to the frame our IMU is calibrated to. We
tuned the value α = 0.996 after some simple experimentation. The intuition
behind the value is that we trust the gyroscope data more in the short term.
We also want to give the acceleration data less weight because we found that
the slight jittering of the stepper motors caused the final angle estimate to
drift even when the robot was completely stationary.

2.5. Hand tracking

In the tracking mode, the robot uses its camera to find hands within
the frame. Then it adjusts its pose with respect to a hand in the frame.
In particular, it attempts to centre the hand within the frame by facing it
directly and it also attempts to maintain a desired distance from the hand.

We used the MediaPipe library for Python to recognise hands from image
data. We can obtain x and y coordinates of a point of a hand within the
frame. A simple PID controller is employed to make the x coordinate of the
hand go to 0 through steering commands.

To maintaining distance another simple PID controller was implemented,
this time taking an estimate for the distance of the hand from the camera
and outputting an inclination command to drive the robot. To estimate
the distance dreal, we chose a open palm hand pose with fingers together
for the camera to recognise. Then we obtained the (x,y) coordinates of

5



two chosen finger joints and found their separation s in the frame. This
separation is inversely proportional to the hand’s distance from the camera:
dreal = m(1

s
) + b. The constants m, b are specific to the camera. A simple

experiment was used to determine them: hold the hand at several distances
dreal, note down the value s, and make a plot of dreal against

1
s
. Obtaining m

and s from the graph is straightforward.

2.6. Parallel programming with an RTOS

We encountered issues when attempting to perform multiple tasks within
the same main loop on the ESP32 microcontroller. Specifically, we observed
jitters and slow movements in our stepper motors when driving them along-
side other operations, such as spinning the microROS node or reading data
from the IMU. Recognising the need for a more efficient approach, we adopted
a strategy to parallelise our system’s tasks.

To address these issues, we leveraged the dual-core architecture of the
ESP32, dedicating core 1 to handle tasks related to spinning the micro-
ROS node as well as reading and filtering data from the IMU. Meanwhile,
core 0 was utilised to drive the stepper motors. This separation of tasks
helped mitigate interference between critical motor control operations and
other non-time-critical tasks. To facilitate this parallel execution, we utilised
FreeRTOS, an open-source real-time operating system for embedded sys-
tems. FreeRTOS provided the necessary features for task scheduling, priority
management, and synchronisation between cores, enabling us to effectively
partition our system’s workload.

However, during our implementation, we encountered a challenge where
gamepad inputs managed by the ROS2-microROS system on core 1 were not
effectively passing through to the task running on core 0. To address this
issue, we adjusted the priority of the task on core 0. By lowering its priority,
we allowed the higher-priority tasks (like spinning the node) execute without
interruption. While this adjustment resolved the jittery movement issue,
it came at the expense of slightly reduced maximum motor speeds. This
balance of task priorities ensured smooth and responsive operation of the
overall system.

3. Electronic composition

Our system contains:

• NEMA 17 stepper motors x2

6



• Raspberry Pi 4 4GB

• ESP32 Microcontroller

• Stepper motor driver x2 (A4988)

• IMU (MPU6050)

• Bluetooth gamepad

• Camera

• EEPROM (1KB)

• 12V 3S LiPO battery

4. Electrical and Electronics Design

4.1. Battery circuitry

Figure 3: Battery circuitry

See fig. 3. We used a LiPo batter to power the stepper motors. The
UBEC is a step down converter with an inductor to prevent current surge to
the electronics when the motors spin suddenly.

4.2. SBC-MCU communication architecture with ROS2 and MicroROS

Explanation: See fig. 4 which depicts the communication architecture to
communicate from the Raspberry Pi 4 to the ESP32. The Raspberry Pi is
running ROS2 humble nodes and the ESP32 is running a microROS node.

7



Figure 4: Flowchart: Raspberry Pi and ESP32 interaction

• (Gamepad Node) Responsible for handling gamepad inputs. This node
receives gamepad input data over Bluetooth and maps those to incli-
nation and steering commands. The y axis of the joystick determines
the inclination command and the x axis of the joystick is mapped to
steering command velocities. Certain button presses are mapped to
commands to change the PID gains for balancing and another impor-
tant value. One of the buttons of the gamepad is used to toggle to hand
tracking node on I’m and off. The tracking mode is off by default. It
publishes on a topic called ”gamepad data”.

• (Hand tracking node) Uses camera data and processed with mediapipe
library. It determines commands to centre the hand in the view frame
using a PID loop as well as to maintain a desired distance from the
hand. Publishes data to ”tracking data”.

• (Combiner node) Handles the mode toggling process, ensuring that only
one complete set of commands sent to the microcontroller. Subscribes
to both ”gamepad data” and ”tracking data” and publishes on a topic
called ”combined data”.

• (MicroROS node) Subscribes to the ”combined data” topic to obtain
the commands from the gamepad and camera. These are used to then
drive the motors as desired.

8



(a) MPU6050 pinout (b) A4988 pinout

(c) Components arranged (d) Electronics wiring

Figure 5: Component pinouts and assembly

4.3. Pinouts and Communication protocols

To enable the smallest step resolution (one 16th of a step), we set the
MS1, MS2 and MS3 pins in the A4988 to high. Show table. This ensures
the smoothest experience.

The ESP32 can read and write to an external EEPROM using the I2C
protocol. This protocol is also used for the ESP32 to communicate to the
OLED display and the MPU6050. The OLED display is interfaced with I2C
communication as it does not need to be high speed and using fewer pins is
desirable.

The benefit of running the PID on the ESP32 instead of the Raspberry
Pi is that latency in transmitting and receiving the data between both com-
puters makes the system naturally more unstable since in control theory, the

9



root locus poles get closer to positive.
Figure 5d depicts the wiring of (1) the ESP32, (2) the OLED display,

(3) the two A4988 stepper drivers, (4) the external EEPROM and (5) the
MPU6050.

5. Experimental Evaluation

5.1. The robot in action

(a) Spinning robot with no sup-
port (b) Inclination angle restoring to stability

(c) Hand tracking using Medi-
aPipe (d) OLED displaying values stored in memory

10



5.2. Debugging, testing and tuning

We employed a few measures to make debugging, testing and tuning
processes more efficient.

Firstly, we enabled live tuning of the PID gains for balancing and the
angle offset θ0 as discussed in section 2.2, facilitated by displaying the values
on the OLED display.

Secondly, a switch is hooked up to the enable pin of stepper drivers (fig.
5b). This way, we could disable the motors whenever we needed. As we
already discussed, we found that the jitter in the stepper motors caused
slight drift in the filtered IMU readings. We found that tuning the value of
θ0 stored in the EEPROM was most successful when the motors were turned
off.

We also used secure shell (SSH) to remotely interface with the Raspberry
Pi’s Ubuntu terminal. This was important for experimentation as we could
remotely start nodes from a laptop connected onto the same network. The
alternative would be to connect the Pi to a monitor through HDMI to then
interface with the OS directly and finally disconnect it so that the robot can
freely move.

6. Discussion and Conclusion

We were very content with the successful ROS-MicroROS architecture.
This made our programs modular and scalable. Suppose that our hand
tracking had bugs. Then we could always stop publishing from the hand
tracking node and the rest of the communications are unaffected. Suppose
we wanted to control the robot with a keyboard, then we could simply add
another node to handle keyboard inputs. The use of parallel programming to
synchronise the ROS process and motor driving process was very successful.

There are some aspects that we would like to improve. One example is
using a layout where the effect of the heating of the LiPO battery on other
components (such as the Raspberry Pi) is mitigated. We did not particularly
find this troubling but it could be a potential issue if the battery gets too
hot.

Regarding the balance, it would be better if the IMU were interfaced us-
ing SPI as it is crucial that the IMU quickly updates the balancing program
on the inclination error to optimise the time taken to correct the robot’s pose.
We also feel that the system would have benefited greatly from highly ac-
curate gyroscope data. We empirically determined that the steering method

11



works in simulation, but when translated to real life, the drift in the inclina-
tion estimate would deteriorate any stability in the robot after it leaned past
any larger angles or after a long time of running. We still discovered a few
ways to mitigate drift in the inclination estimate, such as having the motors
stop when the robot leaned at large angles. We would like to experiment
with other filtering and data fusion techniques in the future, perhaps using a
simplified Kalman filter (even if the dynamics of the system are complex) of
a combination of Kalman and complementary filters. We did try a Kalman
filter library and the estimated angle had very low drift, but it flickered a
lot. Perhaps we could reduce the resolution of the estimate to avoid jittering
in the motors due to a flickering inclination angle estimate.

We found that the camera data was rather slow and had a delay of about
1500 to 2000 milliseconds. This does not affect the balance of the robot as
it is a secondary ability that runs separately, but the tracking response time
is heavily affected.

Overall, we were pleased with many aspects of the project but we wish
to continue its development to achieve even better performance later.

7. Appendix: Algorithms and Program Code

Algorithm 1 Complementary Filter Algorithm for IMU Data Fusion

1: Initialise variables:
2: θgyro ← 0 ▷ Initial orientation estimate from gyroscope
3: θacc ← 0 ▷ Initial orientation estimate from accelerometer
4: α← 0.996 ▷ Complementary filter coefficient (0 < α < 1)
5: previous time← 0
6:

7: procedure ComplementaryFilter(ωgyro, θacc, current time)
8: ω ▷ Read raw gyroscope data
9: [ax, ay, az] ▷ Read raw accelerometer data

10: ∆t← current time− previous time
11: θacc ← arctan(ay, ax) ▷ Compute accelerometer angle
12: θgyro ← θgyro + ωgyro ·∆t ▷ Integrate gyro data
13: θgyro ← α · θgyro + (1− α) · θacc ▷ Apply compl. filt.
14: return θgyro ▷ Filtered orientation estimate
15: end procedure

12



Our system depends on several programs. See our GitHub repositories
for the full ROS2 packages as well as the PyBullet simulation. Packages:
BiStable bringup, BiStable arduino, BiStable description, BiStable scripts,
bistable interfaces. Simulation: bistable. It is likely that you do not have
a Bluetooth gamepad at hand to try the simulation. To control the robot
in the simulation using the arrow keys on you keyboard, switch to the ”key-
board inputs” branch of the ”bistable” repository instead of main.

References

[1] Segway Inc. Segway homepage, 2006. http://www.segway. com/.

[2] Control systems (A volume in the online textbook ”Lessons in Industrial
Automation”). Tony R. Kuphaldt. url: https://control.com/textbook/.
Released under the Creative Commons Attribution 4.0 International
Public License: https://creativecommons.org/licenses/by/4.0/.

[3] Pengfei Gui, Liqiong Tang, and Subhas Mukhopadhyay. “MEMS based
IMU for tilting measurement: Comparison of complementary and kalman
filter based data fusion”. In: 2015 IEEE 10th Conference on Indus-
trial Electronics and Applications (ICIEA). 2015, pp. 2004–2009. doi:
10.1109/ICIEA.2015.7334442.

[4] Hanna Hellman and Henrik Sunnerman. Two-Wheeled Self-Balancing
Robot. 2015.

[5] Mahmoud Khaled et al. Balancing a Two Wheeled Robot. 2009.

[6] Jingtao Li et al. “Controller design of a two-wheeled inverted pendulum
mobile robot”. In: 2008 IEEE International Conference on Mechatronics
and Automation. 2008, pp. 7–12. doi: 10.1109/ICMA.2008.4798717.

13

https://github.com/TheHassanShahzad/bistable_bringup.git
https://github.com/TheHassanShahzad/BiStable_arduino.git
https://github.com/TheHassanShahzad/BiStable_description.git
https://github.com/TheHassanShahzad/BiStable_scripts.git
https://github.com/TheHassanShahzad/bistable_interfaces.git
https://github.com/HarrisRamosBaroni/bistable.git
https://doi.org/10.1109/ICIEA.2015.7334442
https://doi.org/10.1109/ICMA.2008.4798717

	Introduction
	Theoretical background
	Overall system
	Driving the robot
	Steering the robot
	Filtering IMU data
	Hand tracking
	Parallel programming with an RTOS

	Electronic composition
	Electrical and Electronics Design
	Battery circuitry
	SBC-MCU communication architecture with ROS2 and MicroROS
	Pinouts and Communication protocols

	Experimental Evaluation
	The robot in action
	Debugging, testing and tuning

	Discussion and Conclusion
	Appendix: Algorithms and Program Code

