
Our Project: Quarternion Joint

Harris Ramos Baroni, Hassan Shazad, Benjamin Lia

aDepartment of Computer Science, University College London,

1. Introduction

The development of strong, agile and safe humanoid robot mechanisms
remains a fundamental trilemma to the field of robotics. A step towards
this harmony is found in the research of Yong-Jae Kim, Jong-In Kim, and
Wooseok Jang from Naver Labs. They developed LIMS2-AMBIDEX (LIMS2),
a revolutionary device involving a 3-DOF wrist mechanism, which we have
taken inspiration from for our 1st term undergraduate project. Expect our
mathematical notation to be consistent with theirs.

LIMS2 is tendon-driven and achieves a spherical pure rolling motion in a
confined central space, made possible by a unique parallel link mechanism.
The simple, compact and reliable structure of this parallel mechanism enables
fast, accurate and high payload actuation [5].

Despite being outdated by an improved LIMS3-AMBIDEX, a lack of aca-
demic papers meant we proceeded learning from LIMS2, still a revolutionary
contraption. An ability for uniform manipulation and a large range of mo-
tion, while maintaining stiffness and strength, is the reason this wrist mech-
anism is so significant. Safety was also improved by making the mechanism
wire-driven, meaning mass and inertia could be reduced and backdrivability
increased [5]. Mechanisms such as this will replace tedious or dangerous work
in the future, utilising human tools and workspaces. Its unique design and
improved capabilities will make it suitable for a wide range of applications,
which is why our team took interest in this design. Applications include
industrial automation, medical robotics, and space exploration.

Similar developed mechanisms struggle to reconcile safety and effective-
ness. For example, the KUKA-DLR Lightweight Robot arm, despite having a
low mass-payload ratio and a programmable, active compliance [1], force and
torque sensors to ensure safety prove unreliable at high speeds. Moreover,
mechanisms using various series elastic actuators (SEAs) [2] and variable
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stiffness joints (VSJs) [6] trade a high compliance with reduced accuracy due
to low joint stiffness.

Looking elsewhere, Project Blue, developed by University of California,
Berkeley is an example of a low-cost, compliant robot capable of basic ma-
nipulation tasks via a quasi-direct drive. However, it is at the expense of a
reduced max load at continuous operation and a relatively low bandwidth for
industrial standards. Admittedly, their design focused on being cost-efficient
and for household tasks, contrary to LIMS2, developed for more industrial
purposes [3].

Wire-driven mechanisms, where for LIMS2 the motion of the wires di-
rectly represents the quaternion motion of the joint, are known to have a
poor control performance owing to a low stiffness of the tendons. Therefore,
while developing LIMS1-AMBIDEX (LIMS1), novel tension amplification
mechanisms had to be introduced [4]. However, LIMS1 involved a complex
mechanism that had a low payload and stiffness. The development of LIMS2
attempted to solve this, proposing an extremely simple and compact struc-
ture whilst improving all specifications.

In this project, we aim to examine the assembly and range of motion
of the mechanism. Additionally, we will verify the mechanism’s ability to
approximate the ideal circular rolling motion with acceptable accuracy.

2. Mathematical modelling

2.1. Basic 2D Model

The joint’s kinematic structure is derived from the basic 2-dimensional
(2D) model shown in figure 1. It is a pure rolling joint as its motion is equiv-
alent to two ellipses rolling on each other without sliding. This is thanks to
the clever arrangement of linkages as an anti-parallelogram, which is charac-
terised by AC being parallel to BD (figure 1). The crossing point of links
AD and BC is the point F , which represents the point of contact between
the two rolling ellipses, as shown in figure 2a.
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Figure 1: 2D mechanism in
resting position

The bottom plate PB and top plate PT both have
length w while AB and CD have length wc. PB and
PT are connected by the two links AD and BC of
length lc. The links AD and BC have hinge joints
on both their ends. They are not joined at F . Define
α as the angle between the normals of PB and PT ,
and call it the bending angle. The bending plane is
the plane which contains the normals of PB and PT
(which in 2D is just the plane). It is useful to set
the centre O of PB as the origin. If θ is the polar
angle of OE then α = 2θ. Cables of length lp1 and
lp2 connect G, I and H, J respectively. These cables

are set to length hc =
√
l2c − w2

c when α = 0, which we will call its rest pose.
The wrist is tendon-driven: the cable lengths dictate the pitch of the joint,
hence the subscript p.

(a) Motion mimics rolling ellipses (b) 2D model of antiparallelogram linkage during tilt

Figure 2

If we fix PB and vary α, then PT rolls around the crossing point F of AD
and BC. During this motion, we see the lengths lr1 and lr2 vary in figure 2b
but AF + BF = lc = constant as shown in figure 2a. By the definition of
an ellipse, this tells us that F follows an elliptical path with foci at A and
B. Draw a tangent to the ellipse at F . Due to symmetry along this tangent,
we can determine that C and D are the foci of an identical ellipse and thus
we have shown that the mechanism does indeed describe the rolling motion
between two ellipses.

Since the angle α is fully determined by the lengths lp1 and lp2 provided
all the links lengths are established, it is beneficial for us to find this rela-

3



tionship. This is to determine the displacement of the linear actuation wires
represented by lp1 and lp2 required to change angle α.

Noting that a projection of w onto OE is given by w sin θ, it is clear that
the equation that relates the lengths of the two cables is:

lp1 = lp2 − 2w sin θ (1)

Then substituting in l2c = lp1lp2+w2
c (Ptolemy’s Theorem for isosceles trape-

zoids) and solving a quadratic, we obtain:

lpi(θ) =
√
l2c − w2

c cos
2 θ ± w sin θ. (2)

Finally, use θ = α
2
to obtain

lpi(α) =
√
l2c − w2

c cos
2(α

2
)± w sin(α

2
). (3)

We won’t shy away from using eq. (2) instead of (3), though. We can express
the geometry of our mechanism is a more concise and natural way using the
polar angle rather than the bending angle.

2.2. Basic 3D model

(a) Locus of F forms an oblate ellipsoid (b) Cable pairs dictate roll and pitch

The range of motion of the point F in the 3D model is shown in figure
3a. Let us describe the oblate ellipsoid spanned by F as the wrist moves.
It has centre O, extends out by length l

2
in the x and y directions and

by length h0
2

in the z direction. Using spherical coordinates (x, y, z) →
(r sin θ cosϕ, r sin θ sinϕ, r cos θ), the oblate ellipsoid is described by:(

r sin θ cosϕ

lc/2

)2

+

(
r sin θ sinϕ

lc/2

)2

+

(
r cos θ

hc/2

)2

= 1 (4)
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Rearranging for r, we obtain:

r(θ) =
lchc

2
√
(hc sin θ)2 + (lc cos θ)2

(5)

Equation (5) makes it clear that, for an oblate ellipsoid, the radial length
from the centre to the surface is impacted only by the polar angle θ and not
the azimuthal angle ϕ. Instead, ϕ determines the plane in which the wrist
bends: the bending plane. The cross section of the oblate ellipsoid is the
same in any bending plane: they are all equivalent ellipse shapes. Thus, any
further assertions made about the ellipse spanned by F in the 2D case applies
to a cross section of the ellipsoid spanned by F in the 3D case. Therefore,
just as in the 2D case, the bending angle is equal to 2θ.

Introduce another pair of cables of length lr1 and lr2 which determine the
roll of the joint, hence the subscript r. Using similar geometrical arguments
used to obtain eq.s (1) and (2) and the fact that θ is half of the bending
angle, we can derive the following equations:

lpi(θ, ϕ) = h(θ, ψ)± w cosϕ sin θ (6)

lri(θ, ϕ) = h(θ, ψ)± w sinϕ sin θ (7)

where h(θ, ψ) is some function describing the distance OE, akin to the first
term of eq. (2). Intuitively, w cosϕ is a projection of w onto the bending
plane when w is in the plane between the cables determining pitch. Since the
cables that determine roll are at right angles to the cables that determine
pitch, the factor for their projection onto the bending plane is given by
cos(ϕ± τ

4
) = ∓ sinϕ (where τ = 2π). One final projection onto the line OE

is given by the factor of sin θ.

2.3. Approximating a circular pure rolling joint

Recall eq.s (1), (2) and refer to figure 2b. We can also use geometry to
show that h = lpi ±w sin θ and therefore h =

√
l2c − w2

c cos
2 θ. Thus h is not

a constant. Let us briefly investigate the implications of having a constant h.
Let (l+p1, l

−
p2) denote the displacements in the cable pair dictating pitch and

suppose that h is some constant k. Then eq. (2) becomes

lpi = k ± w sin(α
2
) (8)

which tells us that the change in lengths of the cables as α varies is equal and
opposite: l+p1 = −l−p2. We could use the same mechanism that adds length to
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lp1 to subtract length from lp2. Yong-Jae Kim, Jong-In Kim, and Wooseok
Jang argue that it is useful for the elliptical motion to be as close to pure
spherical rolling as possible [5]. Indeed, if this were achieved, our h would be
approximately constant and the proposed mechanism could be implemented.
We will do this in the 2D case, but the results extend directly to 3D.

Firstly, we know that A,B and C,D are the foci of the ellipses. A circle
is a special case of an ellipse were the foci are on top of each other. Reducing
the distance wc = AB = CD between the foci and increasing the length
lc = AD = BC has the effect of bringing the foci of each ellipse closer
(relative to the ellipse’s dimensions). This makes the elliptical motion closer
to that of a circle.

To take things further, we can find which osculating circles approximate
the ellipse that is the locus of F . The radius of curvature R of a curve at the
point with coordinates (x, y) is given by

R =
x′2 − y′2

x′y′′ − y′x′′
. (9)

Parameterising the ellipse using (x, y) → ( lc sinψ
2

, hc cosψ
2

) and calculating
derivatives with respect to ψ, we obtain the following equation:

R =
(l2c cos

2 ψ + h2c sin
2 ψ)

3
2

2lchc
. (10)

R evaluated at a given ψ gives us the best local circle approximation, but
we seek an approximation of the ellipse over a whole range of ψ. We can
find the mean value of R within a desired range of ψ and this can describe
in some way the best circle to approximate the ellipse within that range:

Rmean =
1

ψ2 − ψ1

∫ ψ2

ψ1

Rdψ. (11)

Place the circle with radius Rmean so that it is h0 = Rmean − hc
2

below the
centre of the ellipse. Note that R is symmetrical along ψ=0. If we integrate
over the range [0, τ

8
] and set lc=86mm and wc=30mm then Rmean=44.375mm

and h0=4.076mm. Using eq. (14), we find that the circle with radius Rmean

differs from the ellipse by at most 0.184mm within our range. So if we offset
the links from PB and PT by h0, then the ellipse drawn by F is approximately
the same as a circle of radius Rmean with its centre in the middle of PB.
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This is sufficient for the purpose of constructing a 2-DOF basic mechanism
(considering the fact that it is not affected by backlash), but higher precision
may be necessary for our 3-DOF mechanism which features a non-compliant
shaft connecting OE.

In our tests, the most successful method to find a circle which best de-
scribes the ellipse is the following. We first suppose that there is some circle
with radius R whose centre is h0 below the centre of the ellipse that best
fits its curve. Take the centre of this circle to be the point with coordinates
(0, 0). Then the equation describing the ellipse is:(

x

lc/2

)2

+

(
y − h0
hc/2

)2

= 1 (12)

Using polar coordinates (x, y) → (ρ sinψ, ρ cosψ) and then rearranging for
h0, we obtain

h0(ψ) =
2lcρ cosψ − hc

√
l2c − 4ρ2 sin2 ψ

2lc
(13)

Rearranging eq. (13) instead for ρ:

ρ(ψ) =
2l2ch0 cosψ + lchc

√
l2c cos

2 ψ + (h2c − 4h20) sin
2 ψ

2(h2c sin
2 ψ + l2c cos

2 ψ)
(14)

Fix ρ to some chosen value. Now carefully compare the coefficient of ρ in eq.
(13) to the coefficient of a fixed h0 in eq. (14). We see that the relationship
ψ and ρ nearly mirrors that of ψ and h0. This is evident in figure 4b. With
this, we can now propose some sort of measure which describes how much
each one deviates from a fixed value as ψ varies in the range [0, τ

8
]. Since

variations in h0(ψ) mirror variations in ρ(ψ) we will choose to measure using
h0(ψ) as eq. (13) is friendlier. In our testing, it is sufficient to measure this
variation using a single difference: deviation = |h0( τ8 )−h0(0)|. Let ρmin have
the value which minimises this deviation, i.e, makes the deviation equal to
0. Then it is given by

ρmin =
(2−

√
2)l2chc

(3− 2
√
2)l2c + h2c

. (15)
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(a) ρ against ψ

(b) h0 against ψ

Figure 4: Dotted lines represent mean
values of the functions

Figure 5: Purple circles are approxi-
mated by the orange ellipses

Now, we choose the value of h0 when ψ = 0 (or τ
8
) and ρ = ρmin

1 to
serve as the displacement of the ellipse’s centre. Figure 4a shows the vari-
ation of ρ(ψ) when lc=86mm and wc=30mm so that ρmin=44.97mm and
h0=4.671mm. We see that ρ(ψ) remains more or less constant, deviating
from its mean value 45.005mm by at most ±0.035mm. So we can say that
ρ(ψ) approximates the circle with radius R=45mm with reasonable accuracy.
Recall that the assertions made in this section extend equivalently to 3 di-
mensions2. So, we can settle with this degree of accuracy as it is sufficient
for our purposes of constructing the 3-DOF joint.

We can now assert within reason that the h(ϕ, θ) of eq.s (6) and (7) is
constant. Thus the extension of eq. (8) to 3 dimensions is

l+p1 = −l−p2 = w cosϕ sin θ and l+r1 = −l−r2 = w sinϕ sin θ. (16)

1Indeed, due to the symmetry between eq.s (15) and (16), this value of h0 actually
minimises |ρ( τ8 ) − ρ(0)|. The exact solution to this is ungodly, so we choose to spare the
reader from it’s sight. (It’s monstrous.)

2One would find that the radial length ρ from the origin to an oblate ellipsoid whose
centre has Cartesian coordinates (0, 0, h0) is independent of the azimuthal angle when
describing the problem in spherical coordinates.
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This is very useful: define the scaled cable displacements for pitch and
roll p ≡ cosϕ sin θ, r ≡ sinϕ sin θ respectively. Here is a pleasant result

sin θ =
√
p2 + r2 and sinϕ =

r√
p2 + r2

. (17)

3. Mechanical analysis

3.1. 3-DOF model

Figure 6: 3-DOF mecha-
nism

We will now describe the mechanism show in
figure 6. This mechanism features 3 parallel links
connecting the top and bottom plates which approx-
imate the antiparallelogram mechanism of figure 1
in any bending plane. Their centres of rotation are
offset by some h0 from the very top and bottom
plates thus approximating the rolling motion of two
spheres of radius ρc. Unfortunately, we are not at
a stage where we can verify by ourselves that this
mechanism approximates this ideal spherical rolling
motion with acceptable accuracy. For a full assess-
ment of the mobility of a 3 link mechanism, see [5].

Spheres are sandwiched between a plate and a
flat panel called a brace. These spheres freely ro-
tate between the plate and brace so they act as the
ball joints at either end of the links. The 3 links are
connected to the plates every 120° and their struc-

tures are designed to leave a cavity for a central shaft. Two pairs of opposite
cables are fixed to the top plate and feed through the bottom plate. Each
pair dictates the pitch and the roll respectively through pulley systems.

A hand freely rotates at the top, but is not powered by any transmission
system. A later prototype would ideally include a central shaft which uses a
universal joint at the top and bottom to power this distal yaw motion. It may
include a gear reducer (e.g. planetary gear) at the top. So, this proposed
mechanism has a further degree of freedom.

3.2. Pulley system

Since this quaternion joint mimics spherical rolling, the change of length
in the opposite cables are equal and opposite. We can use a pulley system
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where the cables are of constant length and thus constant tension to im-
plement these changes in lengths. A simple example is shown in figure 7a,
which is sufficient for manual driving of the roll and pitch cables. The pulley
system for the yaw motion allows for motor actuation. The choice to use
cables over, say, a bevel gear for the yaw motion is because it is mechanically
simpler and does not suffer from backlash. For the pitch and roll cables to
avoid intersection and causing friction, the radii of the pulleys for each cable
must be different.

A more complex design for actuation of either roll or pitch cables is shown
in figure 7b, which is more appropriate for implementation of motor actuation
or incorporation into a full robot arm. This mechanism can be duplicated so
that the pitch and roll cables can be driven in parallel, which replaces the
crossed roll and pitch cables from 7a.

Our actual implementation of the pulley system shown in fig. 8b uses the
simpler design. The bottom plate of the base has four sections which extend
out and contain holes to guide the cables through to the pulley system. These
holes act as the bending points of the cables during motion of the wrist so
they are vertically offset by nearly the ideal h0 from the centres of rotation
of the parallel links (the centres of the spheres). This implementation is not
optimal, but the effect of these errors is mitigated through a spring suspension
mechanism between the pulleys and the wrist.

(a) Simple roll, pitch and yaw pulley sys-
tem

(b) A more complex design for actuation of pitch or
roll cables

Figure 7: Arrows show direction of travel of cables
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3.3. Ball joints and motion analysis

Our particular implementation of the ball joints includes a peculiarity
which turned out to be our largest oversight: our parallel links each have an
unwanted third degree of freedom. Define the articulation axis of a parallel
link as the line segment connecting the centres of spheres at either end of
the link. Then each parallel link can swivel around its articulation axis.
This allows the top of the wrist to produce an unwanted yaw motion, but
this effect is substantially mitigated by increasing tension in the cables. If
we ignore this effect, then the swivelling of the links does not impact the
geometry of the wrist’s motion (the wrist still satisfies spherical rolling) since
each articulation axis remains invariant under a swivel, but it can impact the
range of motion as the links can physically interfere with each other due to
their shapes.

Observe the section of the parallel links which extends vertically out of
the ball joints in fig. 8a. These all remain parallel if we once again ignore
the yaw motion of the top of the wrist. Thus, the limit of bending in any
direction occurs when these sections strike the braces. Our latest prototype
reduces the dimension of these sections and we chamfered the holes in the
braces to vastly extend this limit, resulting in ±80° range of motion in any
bending plane whenever swivelling of the links does not restrict it.

3.4. Summary

The mechanism in figure 6 contains

• 3 parallel links

• 6 ball joints

• It has 3 degrees of freedom.

• The bending angle has a range of motion of ±80° in any bending plane.

• It uses a pulley system to enable the mechanism’s roll, pitch and (ide-
ally) yaw motion.

• The dimensions of the 3 parallel links and their offset the plates satisfy
the restrictions which keep eq.s (13), (14) and (15) in the real domain.
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4. Computer Design

Here is a collection of CAD designs and renders of our mechanism.

(a) Schematics of 3-DOF model (b) Assembled wrist in a bent pose

(c) Pulley system CAD (d) Ball joints sandwich design

(e) Render of pulley system (f) Render of cavity for central shaft

Figure 8
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5. Assembly

Here is an outline of how the mechanism in fig. 6 was assembled, starting
from the bottom and working upwards.

(a)

(b)

(c)

Figure 9

1. Assemble the pulleys into the frame as shown
in fig. 9a and secure using screws.

2. Screw the pulley system frame into the bottom
plate.

3. Place spheres on one side of a brace. Screw
the links into the spheres through this brace.

4. Sandwich these 3 spheres between the bottom
plate and brace. Secure the plate and brace
together with screws, as shown in fig. 9b.

5. Sandwich the remaining 3 spheres as well as
well as the disk between the top plate and
brace. Secure with screws.

6. Screw these upper spheres into the links to
connect the top and bottom sections.

7. Measure out appropriate cable lengths (we
used steel rope wire). Bend and crimp ca-
bles into a loop. Screw through loop into the
top plate as shown in fig. 9c. Feed the loose
end through the guides and pulley system then
bend, crimp and screw to the opposite side.
This is, say, the pitch cable. Repeat for the
roll cable.

8. Screw the hand to the disk in the top plate.

Thanks to the modular design of our mechanism, many of the steps out-
lined above may be taken in a different sequence. It also facilitates mainte-
nance as parts can be swapped out without having to disassemble the entire
mechanism.
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6. Discussion and Conclusion

Overall, we believe that our quaternion joint project has been very suc-
cessful relative to our own standards.

We were pleased to independently describe how to approximate spherical
motion in the joint (which arguably improves on the method used in [5] in the
2D case). This elegantly led to the derivation of equations which describe the
forward and inverse kinematics (eq.s (16) and (17)). A solid understanding
of the geometry of the wrists motion enabled freedom for a creative design
and allowed us to make educated decisions and suitable adjustments.

We were most impressed by our modular design: the components can be
easily swapped out to make suitable adjustments. This came in very useful
such as when one of our parallel link prototypes caused restricted motion
due to its dimensions and we replaced it with a more refined design. Other
components were made adjustable so that we may tighten connections or
adjust tension in the cables in order to fine-tune the mobility of the wrist.

Aside from our important discussion in mechanical analysis section 3.3, we
were very satisfied with our ball and socket linkage due to its design efficiency,
incorporating a design whereby the spheres are sandwiched between plates
and braces. This sets it apart from other designs while demonstrating that
both universal and ball joints can be suitable for the parallel links of the
wrist. In the future, however, we would try to restrict the extra degree of
freedom which we did not account for, perhaps by taking inspiration from
the mechanism used for video game joysticks.

One potential issue was the large size of our final model. One reason jus-
tifying our choice of size was to avoid the complications due to the roughness
of PLA in FDM printing for a small model (especially for the ball joints).
While its size also made it suitable for prototyping and demonstration pur-
poses, downscaling the design would be necessary to serve industrial and
practical purposes.

The implementation of our spherical rolling approximation method could
have been further improved: unsuccessful communication of the mathemat-
ical results contained in this report led to erroneous implementation of the
offset h0 in the design. Thanks to our modular design, we swapped the nec-
essary parts to include cable guides in fig. 8b which are more suitably offset
from the centres of rotation of the links, although it was not optimal, as
previously discussed.

In conclusion we believe we have successfully investigated the wrist mech-
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anism of the quaternion wrist of LIMS2-AMBIDEX, considering our success-
ful mathematical modelling, research and experimental design to create our
own prototype of the model.
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